Flow Totalizer

Installation and Operation Guide

CONTENTS

Safety Information	1
Part 1 Instruction	2
1.1 Features	2
1.2 Specifications	3
1.3 Ordering Code	4
Part 2 Installation and Dimension	6
2.1 Instrument Hardware	7
2.2 Fuse Replacement	7
2.3 Dimensions	8
Part 3 Menu Operation	9
3.1 Menu instruction	9
3.1.1 Operation Interface	9
3.1.2 Display Screen	10
3.2 Main Menu	10
3.3 Query	11
3.3.1 Query Submenu	11
3.3.2 Daily Record	11
3.3.3 Monthly Record	12
3.3.4 Power Down	12
3.3.5 Illegal operation	12

3.3.6 Timing Meter Reading	13
3.4 Print	
3.5 Self-test	
3.6 Calibrate	
3.6.1 Calibrate Submenu	
3.6.2 Current Input	
3.6.3 Temperature Input	
3.6.4 Current Output	
3.7 Setup	
3.7.1 Setup Submenu	
3.7.2 Velocity (Volume)	
3.7.3 Mass Flow	
3.7.4 DP Flow	
3.7.5 Orifice DP	
3.7.6 V-Cone DP	
3.7.7 Annubar DP	
3.7.8 Elbow DP	
3.7.9 Linear	
3.7.10 Medium	
3.7.11 Damping Time	
3.7.12 Low Flow Cutoff	
3.7.13 Temperature Sensor	

3.7.14 Pressure Sensor	
3.7.15 Temperature/Pressure Upper and Lower scales	
3.7.16 External Sensor Parameter Correction	
3.7.17 Local Atmospheric Pressure	
3.7.18 Timing Meter Reading	
3.7.19 Timing Print	
3.7.20 Clock Setup	
3.7.21 Communication	
3.7.22 Current Output	
3.7.23 Pulse Output	35
3.7.24 Alarm 1	35
3.7.25 Alarm 2	
3.8 Total Reset	
3.9 Save	
3.10 Password	
3.11 Display	
Part 4 Wirings	
4.1 Wiring Terminals	
4.2 Wiring Diagrams	40
Appendix 1 Application Examples	41
A.1 Example 1	41
A.2 Example 2	41

A.3 Example 3	42
A.4 Example 4	43
A.5 Example 5	43
A.6 Example 6	44
A.7 Example 7	44
A.8 Example 8	45
A.9 Example 9	45
A.10 Example 10	46
Appendix 2 Modbus-RTU Communication Protocol	47
B.1 Communication Instruction	47
B.2 Command Format	47
B.3 Register Map	47
B.4 Examples	49
Appendix 3 Modscan32 Software	50
C.1 Parameter Setup	50
C.2 Display Screen	51
Appendix 4 Computational Formula	55

Safety Information

- Always comply with the safety information to prevent accidents and the occurrence of potential danger.
- This manual classifies important grade of safety attentions by Caution and Warning.

Caution

s guide further explanations or related instructions.

Warning

Error operation in case of ignoring the tips might cause the personal injury or major accident.

- In order to use this manual conveniently, please pass this manual to technical department of end user to keep.
- When installing and debugging the module, please take protections before touching the PCB (Electrostatic discharge).
- When doing debugging, it needs to take down the enclosure of instrument. Please take care to avoid electric shock during the process.
- Disposal: This instrument contains a large number of electronic components and a small amount of Ni-MH batteries, please disposal these wastes according to the electronic industry waste treatment. Environmental protection is everyone's responsibility!

Part 1 Instruction

1.1 Features

- Suitable for flow (Heat) displaying, calculating and controlling of all kinds of liquids, single or mixed gases and vapor.
- Input multiple flow sensor signals (Such as VSF, Turbine, Electromagnetic, Roots, Elliptical gear, Duplex rotor, Orifice plate, V-cone, Annubar, and Thermal flowmeter, etc.).
- Flow input channel: Receive frequency and multiple current signals.
- Pressure and temperature input channel: Receive multiple current signals.
- Provide 24VDC and 12VDC power supply with short circuit protection, simplify the system and save investment.
- Fault-tolerance: When the compensation measurement signals of temperature, pressure or density are abnormal, compensate with the manual setting of the corresponding operation.
- Circular display: Provide convenience to monitor multiple process variables.
- The update cycle of output current signal is 1 second, which can meet the requirements of the automatic control.
- Configure with Instrument clock, automatic meter reading and print function, provide convenience for metering management.
- Self-test and self diagnosis make the instrument more easy to use and maintain.
- 3 -level password to prevent unauthorized personnel to modify parameters.
- There are no potentiometer, code switch and other adjustable devices, that can improve the vibration resistance, stability and reliability of the instrument;
- Communication
 - ♦ RS485
 - ♦ RS232
 - ♦ GPRS/CDMA
 - ♦ Ethernet
- Configure with temperature, pressure, and density compensations, and it also has compressibility coefficient compensation for general gas and flow nonlinear compensation.
- Perfect function of vapor's density compensation, automatic recognition of saturated vapor and superheated vapor and moisture content calculation of wet vapor.

- Special function for trade settlement.
 - \diamond Power down record
 - ♦ Timing meter reading
 - ♦ Query function on some illegal operations.
 - ♦ Printing
- Display unit can be modified according to different requirements.
- Large storage function.
 - ♦ Day record can be stored in 5 years
 - ♦ Month record can be stored in 5 years
 - ♦ Year record can be stored in 16 years

1.2 Specifications

Description	Specifications									
	Analo	og Input	Pulse Input							
	Thermocouple: K, E, B, J, N, T	Γ, S	Waveform: Rectangular, Sine a	nd Triangle wave						
Input Signal	Pt100		Amplitude: more than 4V							
	criptionSpecifyAnalog InputThermocouple: K, E, B, J, N, T, SPt100Current: 0-10mA, $4\sim 20mA$ Input impedances250QInput impedances250QAnalog OutputCommunication OutputDC $0\sim 10mA$ (load resistances750Q)RS232, RS485, EthernetDC $4\sim 20mA$ (load resistances500Q)Baud rate: 600, 1200, 2400, 4800, 9600bps,8 data bits, 1 stop bit, and 1 start bitAccuracy0.2%FS±1d or 0.5%FS±1d Accuracy for frequency conversion: ±1 pulse (LMS), better t		Frequency: $0 \sim 10$ KHz Special requirements please contact us							
	Analog Output	Communication Output	Switch Output	Feed Output						
Output Signal	DC 0∼10mA(load resistance≤750Ω)	RS232, RS485, Ethernet	Relay with hysteresis	DC24V (load current≤100mA)						
Output Signal DC 4~20 resistance	DC 4∼20mA (load resistance≤500Ω)	Baud rate: 600, 1200, 2400, 4800, 9600bps,8 data bits, 1 stop bit, and 1 start bit	AC220V/3A; DC24V/6A(Resistive load)	DC12V (load current≤200mA)						
Accuracy	0.2%FS±1d or 0.5%FS±1d Accuracy for frequency conversion: ±1 pulse (LMS), better than 0.2%									

Measuring Range	-999999 \sim 999999 for flow rate and compensation value 0 \sim 99999999.9999 for totalizer
Display	Backlit 128*64 lattice LCD Display flow totalizer, flow rate, energy, power, medium temperature, medium pressure, medium density, medium heat enthalpy, differential pressure, current, frequency, date, time, Alarm status
Control/Alarm	Optional relay upper limit and lower limit control (Alarm) output, LCD and LED output indication; Control (Alarm) with hysteresis (The number of alarm relay is up to 2) Alarm type: flow upper and lower limit, temperature upper and lower limit, pressure upper and lower limit;
Print	Through RS232 interface to Serial thermal printer Real-time print or timing print, Up to 8 times timing print in one day.
Protection	Totalizer will be remained for more than 20 years after power off Reset automatically when Power supply is low Reset automatically when abnormal working (Watch Dog) Self-healing fuse Short circuit protection Password protection for important data
Operating environment	Ambient temperature : -20∼60°C; Relative humidity: ≤85%RH, Far from strong corrosive gas
Power supply	Normal Type: AC 220V % (50Hz±2Hz) Special Type: AC 80~265V (Switch power) DC 24V±1V (Switch power) (AC 36V 50Hz±2Hz) Back-up power: +12V, 20AH, it will last 72 hours
Power consumption	≤10W

1.3 Ordering Code Ordering Code

Туре										Meter type
Dimension	8									160×80mm (horizontal)
Communication		00								No communication function
-		01								RS-485 communication
		02								RS-232 communication
		03								Ethernet
Alarm 1			1 NO							Switching signal of relay output
			2 NC							
Alarm 2				1 NO						
				2 NC						
output					1					Current output
					2					Pulse Output
Input						1				Thermocouple
						2				Pt100
						3				Pt1000
						4				Current: 0-10mA
						5				Current: 4-20mA
Feed Output							1			DC +5V
							2			DC +12V
							3			DC +24V
Power Supply								1		AC 220V
								2		AC36V
								3		DC24V
Extended									1	USB interface, using to download the data in meter
Function									2	Current: 4-20mA
									3	16 Bit A/D convertor module
									4	Wireless remote control function. Mainly used in dangerous
										occasion and condition of no opening the meter.

The barcode definition:

Extended Function					
L0: No function L1: RS485 L2:USB interface					
L3: remote control L4: Impulse L5: RS232					
L1/5: RS485 / RS232 L6: RS485 and RS232					
L8: 4-20mA L9: RS485 and 4-20mA					

Part 2 Installation and Dimension

2.1 Instrument Hardware

A/D Convertor Module

4-20mA Module

2.2 Fuse Replacement

Figure 1 Unscrew the two nuts

Figure 3 The black rectangular component is fuse

Figure 2 Remove the high voltage protection board

Figure 4 Remove the cover of fuse, replace the fuse, and then complete the assembly

Banger Power off before replacing fuse

2.3 Dimensions

Part 3 Menu Operation

3.1 Menu instruction

3.1.1 Operation Interface

 AH1: No alarm indicator of Alarm 1
 AL1: Alarm indicator of Alarm 1

 AH2: No alarm indicator of Alarm 2
 AL2: Alarm indicator of Alarm 2

 TXD: Indicator of data sending
 RXD: Indicator of data receiving

 Return key: Return to previous menu, switch normal and recycling display in measuring screen.

 Enter key: Enter to next menu, enter main menu in measuring screen, and switch to next parameter in setup menu.

- : Up key, move the cursor upward, and increase the value in setup menu.
- 💋 : Down key, move the cursor downward, and reduce the value in setup menu.
- 1) : Left key, move the cursor leftward, and Shift the flashing digit position to left in setup menu.
- Right key, move the cursor rightward, and Shift the flashing digit position to right in setup menu.

Prompt line

OK	Err	0	9	BH	Gr	S1	SP	STP			
Working w ell	Abnormal working	Normal display	recycling display	Saturated Superheated steam steam		Temperature compensation	Pressure compensation	temperature and pressure compensation			
008: Mete	008: Meter address		AP: Absolute pressure		GP: gauge pressure		GP: gauge pressure				
/	_/_								Ŭ		
Relay on	Relay off	Battery pow ba	rer supply, Full attery	Battery por 90	wersupply, 0%	Battery power supply, 60%	Battery pow er supply, 30%	Battery is low , please charge timely	220VAC pow er supply		

3.1.2 Display Screen

How rate		Tem peratu	e bar chart
1.Prompt information	0K - Gr -	1. Prompt information	
2.Flow rate	FLOW: 0.442 t/h.	2.Medium temperture	TEMP: 199.82 ℃
3.Flow totalizer	$00000039 \frac{6470}{100000000000000000000000000000000000$	3.Current date and time	$0000039 \frac{6470}{}$
4. Medium temperture	t 000000000000000000000000000000000000	4.Temperature bar chart	0000000000, t
5.Medium pressure	199.8°C 0.39MPa	5.Temperature percentage	2013-05-13 10: 56: 21
Pe	ower	pressure	bar cnart
1.Prompt information	OK O Gr 🗕	1. Prompt information	0K - Gr -
2.Pow er	HEAT: 1177.42 MJ/h	2.Medium pressure	PRES: 0.395 MPa
3.Energy	00000039 , $\frac{3261}{3261}$	3.Current date and time	$0000039.\frac{6470}{t}$
4. Medium temperture		4.Pressure bar chart	2013-05-13 10: 56:21
5.Medium pressure	199.8C 0.39 MPa	5.Pressure percentage	24.68%
How rat	e bar chart	Power down and	Illegal operation
1. Prompt information	0K - Gr -	1. Prompt information	0K - Gr -
2.Flow rate	FLOW: 0.442 t/h	2.Pow er dow n count	Powerdown: 0018
3.Current date and time	$00000039.\frac{6470}{t}$	3. legal operation count	Illegal: 0001
4. Flow rate bar chart	2013-05-13 10: 56: 21	4.Current date and time	2013-05-13 10:03:52
5.Flow rate percentage	42.21%		

In debug screen, according to different instrument type, the frequency (QF) and pressure differential (ΔP) are switched automatically.

3.2 Main Menu

In display screen, press ENTER key to enter main menu.

Main Menu

- 1. Query
- 2. Print
- 3. self-test

Main Menu

4. Calibrate 5. Setup

6. Total Reset

Main Menu 7. Save 8. Password 9. Display option

Page 10 of 61

3.3 Query 3.3.1 Query Submenu

In main menu, press Up or Down key to select Query submenu, and then press ENTER key to enter.

In Query submenu, there are records of Daily, Monthly, Power down, illegal action and Timing meter read.

Press Up or Down key to select the inquiry record, and then press ENTER key to query.

3.3.2 Daily Record

Press Up or Down key to select Daily Record, and then press ENTER key to enter, shown as below.

3.3.3 Monthly Record

Press Up or Down key to select Monthly Record, and then press ENTER key to enter, shown as below.

Year/Month: Press Right or Left key to select year or month, and press Up or Down key to select the needed month.

3.3.4 Power Down

Press Up or Down key to select Power Down, and then press ENTER key to enter, shown as below.

3.3.5 Illegal operation

Press Up or Down key to select Illegal Operation, and then press ENTER key to enter, shown as below.

3.3.6 Timing Meter Reading

Press Up or Down key to select Timing Meter Reading, and then press ENTER key to enter, shown as below.

In main menu, press Up or Down key to select Print submenu, and then press ENTER key to enter.

3.5 Self-test

In main menu, press Up or Down key to select Self-test submenu, and then press ENTER key to enter.

This submenu to check the details of running status, $\sqrt{1}$ is ok, and x means this option is abnormal. After self-test, the display will turn to main menu.

self-test								
ADC $$	Clock√							
Memory \checkmark	Coef.√							
IC √	Batt.√							

3.6 Calibrate 3.6.1 Calibrate Submenu

This submenu is used to calibrate the internal analog signal, and it affects the accuracy of instrument. If there are no resistance box, standard current source, multimeter and other calibration equipment, please do not use this submenu! In main menu, press Up or Down key to select Calibrate submenu, and then press ENTER key to enter.

Main Menu 2. Print 3. self-test 4. Calibrate

Password:

Current Input
 Temperature
 Current Output

Note: The calibrate submenu has password protection. When inputting password, press Left or Right key to shift the cursor, and press Up or Down key to increase or decrease the number. The default password is 000000, users can modify the password according to 3.10 Password.

3.6.2 Current Input

In calibrate submenu, press Up or Down key to select Current Input, and then press ENTER key to enter.

When calibrating, it needs standard current source to input current to instrument according to "Input" prompt.

For example of calibrating Flow (DP), select Flow (DP), and press ENTER key to calibrate. Input 4mA for zero-scale, the instrument will display a measuring value PV approximating 4mA, and then press ENTER key to enter full-scale. Input 20mA for full-scale, the instrument will display a PV approximating 20mA, and then press ENTER key to finish calibration. After calibration, the instrument will display "Successful", and then return to calibrate submenu.

1. Current Input 2. Temperature 3. Current Output	Current Input 1. Flow (DP) 2. Pressure 3. Temperature	Current: Flow (DP) Zero-scale: Input: 4.000mA PV: 3.980mA	Flow (DP) Full-scale: Input: 20.000mA PV: 19.998mA		Successful !	
---	--	--	---	--	--------------	--

The calibration method of temperature and pressure is the same as that of Flow (DP).

3.6.3 Temperature Input

In calibrate submenu, press Up or Down key to select Temperature, and then press ENTER key to enter.

When calibrating, it needs standard resistance box to input resistance to instrument according to R value.

1. Current Input2. Temperature3. Current Output	emp. sensor: Pt100 SV: 100 SV: 0.0 PV: 0.4	: Pt100 D.00ohm 0℃ 1℃	Input: Pt100 RV: 247.09ohm SV: 400.00℃ PV: 399.41℃	Successful !
---	--	--------------------------------	---	--------------

After calibration, the instrument will display "Successful", and then return to calibrate submenu.

3.6.4 Current Output

In calibrate submenu, press Up or Down key to select Current Output, and then press ENTER key to enter.

When calibrating, it needs multimeter to measuring the output current, and then input this current value into "PV".

1. Current Input 2. Temperature 3. Current Output		Current output OV: 4.000mA PV: 03.976mA		Current output OV: 20.000mA PV: 19.887mA		Successful !
---	--	---	--	--	--	--------------

After calibration, the instrument will display "Successful", and then return to calibrate submenu. 3.7 Setup

3.7.1 Setup Submenu

This submenu affects the performance and accuracy of instrument, please be careful when operating. In main menu, press Up or Down key to select Setup submenu, and then press ENTER key to enter.

Before setting, please confirm the meter type. The meter types are shown as below.

1. Veloc./PD: Velocity/Volume	3. DP scale: DP flow	5. V cone DP	7. Elbow DP
2. Mass Flow	4. Orifice DP: Orifice plate DP	6. Annubar DP	8. Linear: Linear current

(DP: Differential Pressure)

After setting the meter type, the options display the related parameter numbers of this meter type. For example of 01/04, 01 indicates the follow is the first parameter, 04 indicates that there are 4 parameters needed to set in total.

3.7.2 Velocity (Volume)

3.7.2.1 Veloc/PD

The meter type "Veloc./PD" includes Volumetric flowmeters and Velocity type flow meters, shown as below.

After setting meter type, press Right key to shift cursor on Pulse, press Up or Down key to select different signal type. There are three parameters in Veloc./PD: Pulse (Volume), 4-20mA (Volume) and 0-10mA (Volume).

When choosing different signal type, the related parameters will vary, shown as below.

Pulse		4-20mA		0-10mA	
1. Signal type	3. Coefficient linearity	1. Signal type	3. Flow F.S.	1. Signal type	3. Flow F.S.
2. Cut-off frequency	4. Flow coefficient	2. Flow F.S. unit	4. Cut-off current	2. Flow F.S. unit	4. Cut-off current

3.7.2.2 Pulse

After setting meter type, press Right key to shift cursor on Pulse (Select pulse signal type), and then press Right key to shift cursor on Signal type, press Up key to change Signal type to Cut-off freq. (Cut-off frequency is set according to different flowmeters on site. Generally do not need to set this parameter.). When setting Cut-off freq. value, press right key to shift the cursor position, and press Up or Down key to change the value.

Meter: Veloc./PD Meter: Veloc /PD Meter: Veloc./PD Meter: Veloc./PD Options: 02/04 Options: 03/04 Options: 03/24 Options: 04/04 Coef linearize: Cut-off frea .: Coef. linearize: Flow coefficient: 0000Hz OFF 00003.600 1/L ON

After setting Cut-off frequency, press Left key to shift cursor on Cut-off freq., and then press Up key to change Cut-off freq. to Coefficient linearize (Coefficient linearize is used for linearity correction, default setup is "OFF").

Note: If coefficient linearity is set ON, there are up to 24 parameters needed to set in total. Options 5-24 are used to set section coefficients. In each option, input related section frequency and section coefficient, and then the instrument calculates flow with section coefficient.

Set Coefficient linearize OFF, press Left key to shift cursor on Coefficient linearize, and then press Down key to change Coefficient linearize to Flow coefficient. Press Right key to shift cursor on coefficient value, and then press Up/Down key to change the value. After setting, press ENTER key to enter next menu.

3.7.2.3 4-20mA

According to 3.7.2.1, select "4-20mA" in signal type. Press Left key shift cursor on Signal type, and then press Up key to change Signal type to Flow F.S. unit. In Flow F.S. unit, there are two options: m3/h and l/h (The Flow F.S. unit should be the same as that of flowmeters).

Meter: Veloc./PD				
Options: 01/04				
Signal type:				
4-20mA				

Meter: Veloc./PD Options: 02/04 Flow F.S. unit: m3/h

Meter: Veloc./PD Options: 03/04 Flow F.S.: 0001000.000 m3/h

Meter: Veloc./PD Options: 04/04 Cut-off current: 4.000mA

After setting unit, press Left key to shift cursor on Flow F.S. unit, and then press Up key to change Flow F.S. unit to Flow F.S. (The Flow full scale should be the same as that of flowmeters).

After setting F.S. value, press Left key to shift cursor on Flow F.S., and then press Up key to change Flow F.S. to Cut-off current (Cut-off current is set according to different flowmeters on site. Generally do not need to set this parameter.).

3.7.2.4 0-10mA

According to 3.7.2.1, select "0-10mA" in signal type, and the method of parameters setup is the same as that of "4-20mA" signal type.

3.7.3 Mass Flow

In main menu, press Up or Down key to select Setup submenu, press ENTER key to enter, and then press Up/Down key to select "Mass Flow".

3. self-test 4. Calibrate 5. Setup	Options: 01/04 Signal type: Pulse
--	---

There are three parameters in Mass Flow: Pulse (Mass), 4-20mA (Mass) and 0-10mA (Mass). The setup method of mass flow is the same as that of Veloc./PD.

3.7.4 DP Flow

In main menu, press Up or Down key to select Setup submenu, press ENTER key to enter, and then press Up/Down key to select "DP Scale".

Main Menu 3. self-test 4. Calibrate 5. Setup	Password *****	Meter: DP Scale Options: 01/08 Signal type: 4-20mA No √	Note: Orifice plate, V-Cone, Annubar, venturi tube and Elbow are all belong to differential pressure flowmeter, and the output signal is scale mass flow.
---	-------------------	--	---

There are four signal types: 4-20mA No $\sqrt{}$, 4-20mA $\sqrt{}$, 0-10mA No $\sqrt{}$ and 0-10mA $\sqrt{}$. In this manual, it only introduce 4-20mA No $\sqrt{}$, the others refer to 4-20mA No $\sqrt{}$.

- No √ means that the output signal of differential pressure transmitter is no square root signal, this kind signal should be extracted the square root and then can take part in computation.
- $\sqrt{}$ means that the output signal of differential pressure transmitter is linear signal, this kind signal do not need to be extracted the square root.

After setting meter type, press Right key to shift cursor on 4-20mA No $\sqrt{}$ signal type, and then press Right key to shift cursor on Signal type. Press Up key to change Signal type to Scale flow unit, press Right key to shift cursor on unit t/h, and then press Up key to select different units (t/h and Kg/h).

Meter: DP Scale Options: 02/08 Scaled flow unit:	Meter: DP Scale Options: 03/08 Scaled range:	Meter: DP Scale Options: 04/08 Design density:	Meter: DP Options: DP unit:	Scale 05/08
t/h	0000010.000t/h	0001.2800kg/m3		Pa

After setting scaled flow unit, press Left key to shift the cursor on Scale flow unit, press Up key to change Scale flow unit to Scaled range, press Right key to shift cursor on flow value, and then press Up/Down key to change this value (The range of F.S. flow is 0-99999999.999).

After setting scaled range, press Left key to shift the cursor on Scaled range, press Up key to change Scaled range to Design Density, press Right key to shift cursor on density value, and then press Up/Down key to change this value.

After setting design density, press Left key to shift the cursor on Design density, press Up key to change Design density to DP unit (Differential pressure unit), press Right key to shift cursor on unit, and then press Up/Down key to select different units (Pa, KPa and MPa).

After setting DP unit, press Left key to shift the cursor on DP unit, press Up key to change DP unit to DP low scale (Differential pressure low scale), press Right key to shift cursor on low scale value, and then press Up/Down key to change this value.

Meter: DP Scale						
Options: 06/08						
DP low scale:						
+000.000Pa						

Note: When shifting the cursor on the +/symbol, press Up key to switch positive and negative pressure. The range of DP low limit is 0-999.999.

Meter: DP Scale Options: 08/08 Cut-off current: 2.600mA

After setting DP low scale, press Left key to shift the cursor on DP low scale, press Up key to change DP low scale to DP high scale (Differential pressure high scale), press Right key to shift cursor on high scale value, and then press Up/Down key to change this value.

After setting DP high scale, press Left key to shift the cursor on DP high scale, press Up key to change DP high scale to Cut-off current, press Right key to shift cursor on current value, and then press Up/Down key to change this value.

3.7.5 Orifice DP

In main menu, press Up or Down key to select Setup submenu, press ENTER key to enter, and then press Up/Down key to select "Orifice DP".

There are nine parameters in Orifice DP: Signal type, Pipe inside diameter D, Hole diameter d, Expansibility factor ϵ , Discharge coefficient c, DP unit, DP low scale, DP high scale and Cut-off current.

Main Menu 3. self-test 4. Calibrate	Password *****	Meter: Orifice DP Options: 01/09 Signal type:	Meter: Orifice DP Options: 02/09 Pipe diameter D:	Meter: Orifice DP Options: 03/09 Hole diameter d:
5. Setup		4-20mA No √	0400.00mm	0200.00mm

After selecting Orifice DP, and then press Right key to shift cursor on 4-20mA No $\sqrt{}$. There are four signal types: 4-20mA No $\sqrt{}$, 4-20mA $\sqrt{}$, 0-10mA No $\sqrt{}$ and 0-10mA $\sqrt{}$. In this manual, it only introduce 4-20mA No $\sqrt{}$, the others refer to 4-20mA No $\sqrt{}$. Press Up key to select different signal types.

After setting Signal type "4-20mA No $\sqrt{}$ ", press Left key to Signal type, press Up key to change Signal type to Pipe diameter D, press Right key to shift cursor on D value, and then press Up/Down key to change this value.

After setting Pipe diameter D, press Left key to shift the cursor on Pipe diameter D, press Up key to change Pipe diameter D to Hole diameter d, press Right key to shift cursor on d value, and then press Up/Down key to change this value.

Meter: Orifice DP	Meter: Orifice DP	Meter: Orifice DP	Meter: Orifice DP
Options: 04/09	Options: 05/09	Options: 06/09	Options: 07/09
Expansibility ε :	Discharge coe. c:	DP unit:	DP low scale:
1.00000	0.80000	KPa	+000.000KPa
Meter: Orifice DPOptions:08/09DP high scale:+250.000KPa4.000mA		Note: When shifting the symbol, press Up key and negative pressure The range of DP low li	e cursor on the +/- / to switch positive mit is 0-999.999.

After setting Hole diameter d, press Left key to shift the cursor on Hole diameter d, press Up key to change Hole diameter d to Expansibility ε , press Right key to shift cursor on ε value, and then press Up/Down key to change this value.

After setting Expansibility ε , press Left key to shift the cursor on Expansibility ε , press Up key to change Expansibility ε to Discharge coe. c, press Right key to shift cursor on c value, and then press Up/Down key to change this value.

After setting Discharge coe. c, press Left key to shift the cursor on Discharge coe. c, press Up key to change Discharge coe. c to DP unit, press Right key to shift cursor on unit, and then press Up/Down key to select different units (Pa, KPa and MPa).

After setting DP unit, press Left key to shift the cursor on DP unit, press Up key to change DP unit to DP low scale, press Right key to shift cursor on low scale value, and then press Up/Down key to change this value.

After setting low scale value, press Left key to shift the cursor on DP low scale, press Up key to change DP low scale to DP high scale, press Right key to shift cursor on high scale value, and then press Up/Down key to change this value.

After setting DP high scale, press Left key to shift the cursor on DP high scale, press Up key to change DP high scale to Cut-off current, press Right key to shift cursor on current value, and then press Up/Down key to change this value.

3.7.6 V-Cone DP

In main menu, press Up or Down key to select Setup submenu, press ENTER key to enter, and then press Up/Down key to select "V-Cone DP".

There are nine parameters in V-Cone DP: Signal type, Pipe inside diameter D, Cone diameter d, Expansibility factor ϵ , Discharge coefficient c, DP unit, DP low scale, DP high scale and Cut-off current.

Main Menu	Password	Meter: V-Cone DP	Meter: V-Cone DP	Meter: V-Cone DP
3. self-test 4. Calibrate	*****	Options: 01/09 Signal type:	Options: 02/09 Pipe diameter D:	Options: 03/09 Cone diameter d:
5. Setup		4-20mA No √	0400.00mm	0200.00mm

Page 23 of 61

After setting V-Cone DP, and then press Right key to shift cursor on 4-20mA No $\sqrt{}$. There are four signal types: 4-20mA No $\sqrt{}$, 4-20mA $\sqrt{}$, 0-10mA No $\sqrt{}$ and 0-10mA $\sqrt{}$. In this manual, it only introduce 4-20mA No $\sqrt{}$, the others refer to 4-20mA No $\sqrt{}$. Press Up key to select different signal types.

After setting Signal type "4-20mA No $\sqrt{}$ ", press Left key to Signal type, press Up key to change Signal type to Pipe diameter D, press Right key to shift cursor on D value, and then press Up/Down key to change this value.

After setting Pipe diameter D, press Left key to shift the cursor on Pipe diameter D, press Up key to change Pipe diameter D to Cone diameter d, press Right key to shift cursor on d value, and then press Up/Down key to change this value.

Meter: V-Cone DP Options: 04/09 Expansibility ε : 1.00000	Meter: V-Cone DP Options: 05/09 Discharge coe. c: 0.80000	Meter: V-Cone DP Options: 06/09 DP unit: KPa		Meter: V-Cone DP Options: 07/09 DP low scale: +000.000KF	Pa
Meter: V-Cone DP Options: 08/09 DP high scale: +250.000KPa	Meter: V-Cone DP Options: 09/09 Cut-off current: 4.000mA	Note: When shifting the symbol, press Up key and negative pressure The range of DP low line	ne c / to mit	ursor on the +/- switch positive is 0-999.999.	

After setting Cone diameter d, press Left key to shift the cursor on Cone diameter d, press Up key to change Cone diameter d to Expansibility ε , press Right key to shift cursor on ε value, and then press Up/Down key to change this value.

After setting Expansibility ε , press Left key to shift the cursor on Expansibility ε , press Up key to change Expansibility ε to Discharge coe. c, press Right key to shift cursor on c value, and then press Up/Down key to change this value.

After setting Discharge coe. c, press Left key to shift the cursor on Discharge coe. c, press Up key to change Discharge coe. c to DP unit, press Right key to shift cursor on unit, and then press Up/Down key to select different units (Pa, KPa and MPa).

After setting DP unit, press Left key to shift the cursor on DP unit, press Up key to change DP unit to DP low scale, press Right key to shift cursor on low scale value, and then press Up/Down key to change this value.

After setting low scale value, press Left key to shift the cursor on DP low scale, press Up key to change DP low scale to DP high scale, press Right key to shift cursor on high scale value, and then press Up/Down key to change this value.

After setting DP high scale, press Left key to shift the cursor on DP high scale, press Up key to change DP high scale to Cut-off current, press Right key to shift cursor on current value, and then press Up/Down key to change this value.

3.7.7 Annubar DP

In main menu, press Up or Down key to select Setup submenu, press ENTER key to enter, and then press Up/Down key to select "Annubar DP".

There are nine parameters in Annubar DP: Signal type, Pipe inside diameter D, Drag coefficient, Expansibility factor ϵ , Flow coefficient, DP unit, DP low scale, DP high scale and Cut-off current.

3. self-test 4. Calibrate 5. Setup	ssword *****	Meter: Annubar DP Options: 01/09 Signal type: 4-20mA No √	Meter: Annubar DP Options: 02/09 Pipe diameter D: 0400.00mm	Meter: Annubar DP Options: 03/09 Drag coe.: 002.54173
--	-----------------	--	--	--

After setting Annubar DP, and then press Right key to shift cursor on 4-20mA No $\sqrt{}$. There are four signal types: 4-20mA No $\sqrt{}$, 4-20mA $\sqrt{}$, 0-10mA No $\sqrt{}$ and 0-10mA $\sqrt{}$. In this manual, it only introduce 4-20mA No $\sqrt{}$, the others refer to 4-20mA No $\sqrt{}$. Press Up key to select different signal types.

After setting Signal type "4-20mA No $\sqrt{}$ ", press Left key to Signal type, press Up key to change Signal type to Pipe diameter D, press Right key to shift cursor on D value, and then press Up/Down key to change this value.

After setting Pipe diameter D, press Left key to shift the cursor on Pipe diameter D, press Up key to change Pipe diameter D to Resistance coe., press Right key to shift cursor on coe. value, and then press Up/Down key to change this value.

Meter: Annubar DP	Meter: Annubar DP	Meter: Annubar DP	Meter: Annubar DP
Options: 04/09	Options: 05/09	Options: 06/09	Options: 07/09
Expansibility ε :	Flow coe.:	DP unit:	DP low scale:
1.00000	0.80000	KPa	+000.000KPa
Meter: Annubar DP Options: 08/09 DP high scale: +250.000KPa	Meter: Annubar DP Options: 09/09 Cut-off current: 4.000mA	Note: When shifting th symbol, press Up key and negative pressure. The range of DP low lin	e cursor on the +/- to switch positive mit is 0-999.999.

After setting Resistance coe. value, press Left key to shift the cursor on Resistance coe., press Up key to change Resistance coe. to Expansibility ε , press Right key to shift cursor on ε value, and then press Up/Down key to change this value.

After setting Expansibility ε , press Left key to shift the cursor on Expansibility ε , press Up key to change Expansibility ε to Flow coe., press Right key to shift cursor on coefficient value, and then press Up/Down key to change this value.

After setting coefficient value, press Left key to shift the cursor on Flow coe., press Up key to change Flow coe. to DP unit, press Right key to shift cursor on unit, and then press Up/Down key to select different units (Pa, KPa and MPa).

After setting DP unit, press Left key to shift the cursor on DP unit, press Up key to change DP unit to DP low scale, press Right key to shift cursor on low scale value, and then press Up/Down key to change this value.

After setting low scale value, press Left key to shift the cursor on DP low scale, press Up key to change DP low scale to DP high scale, press Right key to shift cursor on high scale value, and then press Up/Down key to change this value.

After setting high scale value, press Left key to shift the cursor on DP high scale, press Up key to change DP high scale to Cutoff current, press Right key to shift cursor on current value, and then press Up/Down key to change this value.

3.7.8 Elbow DP

In main menu, press Up or Down key to select Setup submenu, press ENTER key to enter, and then press Up/Down key to select "Elbow DP".

There are nine parameters in Elbow DP: Signal type, Pipe inside diameter D, Bend radius R, Expansibility factor ϵ , Flow coefficient, DP unit, DP low scale, DP high scale and Cut-off current.

Main Menu 3. Self-Checking 4. Calibrate 5. Setup	Password *****	Meter: Elbow DP Options: 01/09 Signal type: 4-20mA No √	Meter: Elbow DP Options: 02/09 Pipe diameter D: 0600.00mm	Meter: Elbow DP Options: 03/09 Bend radius R: 0001,5000mm
		1 2011/110	0000.0011111	

After setting Elbow DP, and then press Right key to shift cursor on 4-20mA No $\sqrt{}$. There are four signal types: 4-20mA No $\sqrt{}$, 4-20mA $\sqrt{}$, 0-10mA No $\sqrt{}$ and 0-10mA $\sqrt{}$. In this manual, it only introduce 4-20mA No $\sqrt{}$, the others refer to 4-20mA No $\sqrt{}$. Press Up key to select different signal types.

After setting Signal type "4-20mA No $\sqrt{}$ ", press Left key to Signal type, press Up key to change Signal type to Pipe diameter D, press Right key to shift cursor on D value, and then press Up/Down key to change this value.

After setting Pipe diameter D, press Left key to shift the cursor on Pipe diameter D, press Up key to change Pipe diameter D to Bend radius R, press Right key to shift cursor on Bend radius R value, and then press Up/Down key to change this value.

Meter: Elbow DP	Meter: Elbow DP	Meter: Elbow DP	Meter: Elbow DP
Options: 04/09	Options: 05/09	Options: 06/09	Options: 07/09
Expansibility ε :	Flow coe.:	DP unit:	DP low scale:
1.00000	1.29900	Pa	+000.000KPa
Meter: Elbow DP Options: 08/09 DP high scale: +010.000KPa	Meter: Elbow DP Options: 09/09 Cut-off current: 4.000mA	Note: When shifting the symbol, press Up key t and negative pressure. The range of DP low limit	cursor on the +/- to switch positive it is 0-999.999.

After setting Bend radius R, press Left key to shift the cursor on Bend radius R, press Up key to change Bend radius R to Expansibility ε , press Right key to shift cursor on ε value, and then press Up/Down key to change this value.

After setting Expansibility ε value, press Left key to shift the cursor on Expansibility ε , press Up key to change Expansibility ε to Flow coe., press Right key to shift cursor on coefficient value, and then press Up/Down key to change this value.

After setting Flow coefficient value, press Left key to shift the cursor on Flow coe., press Up key to change Flow coe. to DP unit, press Right key to shift cursor on unit, and then press Up/Down key to select different units (Pa, KPa and MPa).

After setting DP unit, press Left key to shift the cursor on DP unit, press Up key to change DP unit to DP low scale, press Right key to shift cursor on low scale value, and then press Up/Down key to change this value.

After setting low scale value, press Left key to shift the cursor on DP low scale, press Up key to change DP low scale to DP high scale, press Right key to shift cursor on high scale value, and then press Up/Down key to change this value.

After setting high scale value, press Left key to shift the cursor on DP high scale, press Up key to change DP high scale to Cutoff current, press Right key to shift cursor on current value, and then press Up/Down key to change this value.

3.7.9 Linear

The Linear current is used to divide output current of instrument into 10 sections, and then set flow value for each current section. In main menu, press Up or Down key to select Setup submenu, press ENTER key to enter, and then press Up/Down key to select "Linear".

Main Menu 3. self-test 4. Calibrate	Password	Meter: Linear Options: 01/21	Meter: Linear Options: 02/21	Meter: Linear Options: 03/21 Elow rate01:
5. Setup		m3/h	00.000mA	0000100.000m3/h

There are four units in Flow unit: m3/h, l/h, t/h and kg/h, press Right key on unit, and press Up/Down key to select different units.

After setting flow unit, press Left key to shift cursor on Flow unit, press Up key to change Flow unit to Current 01, press Right key to shift cursor on current 01 value, and then press Up/Down key to change this value.

After setting Current 01, press Left key to shift cursor on Current 01, press Up key to change Current 01 to Flow rate 01, press Right key to shift cursor on flow 01 value, and then press Up/Down key to change this value.

The setup method of current 02-10 and flow rate 02-10 is the same as that of current 01 and flow rate 01.

3.7.10 Medium

3.7.10.1 Medium Options

After setting related parameters of flowmeter, press ENTER key to enter "Medium" menu.

Medium Options
1. Vapor (Auto): Vapor Automatic Compensation
2. S vapor temp.: Saturated vapor temperature compensation
3. S vapor pres.: Saturated vapor pressure compensation
4. S vapor TP: Superheated vapor pressure and temperature compensation
5. Gas (Std. volume)
6. Gas (Mass)
7. Liquid (Volume)
8. Liquid (Mass)
9. Constant Density

3.7.10.2 Vapor (Auto)

In medium menu, Press Up key to select Vapor (Auto), press Right key to shift cursor to option content, and then press Down key

to select Pres. priority or Temp. priority.

Medium: Vapor (Auto) Option: Pres. priority

Pres. priority: Include high temperature condensate water, pressure compensation priority. Temp. priority: Only measure dry saturated vapor, temperature compensation priority.

When measuring vapor, there are another three selections: Saturated vapor temperature compensation, Saturated vapor pressure compensation and Superheated vapor pressure and temperature compensation.

3.7.10.2 Gas (Std. Volume)

In medium menu, press Left key to shift cursor on Vapor (Auto), and then press Up key to select Gas (Std. volume). Compensation is the temperature and pressure compensation of common gas, and the unit of flow rate is Nm3/h.

Press Right key to shift cursor on density value, and then press Up/Down key to change this value.

After setting standard density, it needs to input the standard temperature related to standard density. Press Left key to shift cursor on Std. density, press Up key to change Std. density to Std. temperature, press Right key to shift cursor on temperature value, and then press Up/Down key to change this value.

3.7.10.3 Gas (Mass)

In medium menu, press Left key to shift cursor on Gas (Std. volume), and then press Up key to select Gas (Mass). Compensation is the temperature and pressure compensation of common gas, and the unit of flow rate is t/h.

Press Right key to shift cursor on density value, and then press Up/Down key to change this value. After setting standard density, it needs to input the standard temperature related to standard density. Press Left key to shift cursor on Std. density, press Up key to change Std. density to Std. temperature, press Right key to shift cursor on temperature value, and then press Up/Down key to change this value. Medium: Gas (Std. volume) Std. density: 0001.2048kg/m3

3.7.10.4 Liquid (Volume)

In medium menu, press Left key to shift cursor on Gas (Mass), and then press Up key to select Liquid (Volume).

Press Right key to shift cursor on density value, and then press Up/Down key to change this value.

After setting Density (20° C), press Left key to shift cursor on Density (20° C), press Up key to change Density (20° C) to Coe.V-expansion (Expansibility factor), press Right key to shift cursor on factor value, and then press Up/Down key to change this value.

3.7.10.5 Liquid (Mass)

In medium menu, press Left key to shift cursor on Liquid (Volume), and then press Up key to select Liquid (Mass).

Press Right key to shift cursor on density value, and then press Up/Down key to change this value.

After setting Density (20° C), press Left key to shift cursor on Density (20° C), press Up key to change 20° C density to Coe.V-expansion (Expansibility factor), press Right key to shift cursor on factor value, and then press Up/Down key to change this value.

3.7.10.6 Density Compensation

In medium menu, press Left key to shift cursor on Liquid (Mass), and then press Up key to select Constant density (Density compensation).

Press Right key to shift cursor on density value, and then press Up/Down key to change this value.

3.7.11 Damping Time

After setting medium parameters, press ENTER key to enter Damping time menu. The damping time is set according to different flowmeters on site.

Press Right key to shift cursor, and press Up/Down key to change time value, damping time range is 0-30s. Liquid (Volume) Density (20°C): 1000.0000kg/m3 Medium: Liquid (Volume) Coe.V-expansion: 0.0000

Medium:

Medium: Liquid (Mass) Density (20°C): 1000.0000kg/m3

Medium: Liquid (Mass) Coe.V-expansion: 0.8000

Medium: Constant density Constant density: 1000.0000kg/m3

Damping time: 01/30 s

3.7.12 Low Flow Cutoff

After setting damping time, press ENTER key to enter Low Flow Cutoff menu. The cutoff value is set according to different flowmeters on site.

Low flow cutoff 00000.000

Press Right key to shift cursor, and press Up/Down key to change this value.

3.7.13 Temperature Sensor

After setting low flow cutoff, press ENTER key to enter temperature sensor menu, and press Up key to select different temperature sensor type. There are five temperature sensor types: Pt100, 4-20mA, 0-10mA, Constant (Setting temperature) and Thermocouple (S/R/B/K/N/E/J/T).

T Sensor: Pt100 Constant: +180.00

The setting temperature is used to compensate and display with manual setting temperature when the external temperature sensor is abnormal (Beyond the lower or upper scale of temperature).

When the T sensor is selected 4-2mA or 0-10mA signal, it needs to set the L scale (Lower scale) and H scale (Upper scale) of temperature. Press Right key to shift the cursor on scale values, and then press Up/Down key to change these values.

3.7.14 Pressure Sensor

After setting temperature sensor, press ENTER key to enter pressure sensor menu, press Up key to select different temperature sensor type, and set the L scale (Lower scale) and H scale (Upper scale) of temperature

P Sensor: 4-20mA G Const.: +00.000 L scale: +00.000 H scale: +01.600

The setting pressure is used to compensate and display with manual setting pressure when the external pressure sensor is abnormal (Beyond the lower or upper scale of pressure).

There are six pressure sensor types: 4-20mA G (4-20mA gauge pressure), 4-20mA A (4-20mA absolute pressure), 0-10mA G (0-10mA gauge pressure), 0-10mA A (4-20mA absolute pressure), Const. G (Setting gauge pressure) and Const. A (Setting absolute pressure).

Note: The unit of setting pressure, L scale and H scale pressure is MPa.3.7.15 Temperature/Pressure Upper and Lower scales Page 32 of 61 After setting pressure sensor, press ENTER key to enter T/P upper and lower scales menu, press Right key to shift cursor, and then press Up/Down key to set the lower and upper scale of temperature and pressure.

T lower: -040.0 T upper: +300.0 P lower: -00.01 P upper: +02.00	If the temperature or pressure is out of the range, it will use setting temperature or pressure to compensate and alarm. This alarm can be used relay to output switching signal.

3.7.16 External Sensor Parameter Correction

After setting T/P upper and lower scales, press ENTER key to enter external sensor parameter correction menu, press Right key to shift cursor, and then press Up/Down key to set the values.

3.7.17 Local Atmospheric Pressure

After setting external sensor parameter correction, press ENTER key to enter local atmospheric pressure menu, press Right key to shift cursor, and then press Up/Down key to set the values.

3.7.18 Timing Meter Reading

After setting local atmospheric pressure, press ENTER key to enter timing meter reading menu. The times of timing meter reading can be set to up to eight, and the records can be queried in 3.3 Query. Press Right key to shift cursor, and then press Up/Down key to set the values.

3.7.19 Timing Print

After setting timing meter reading, press ENTER key to enter timing print menu. The times of timing print can be set to up to eight, and the time if print can be set by users. This function

can be used normally after connecting and setting printer correctly.

Press Right key to shift cursor, and then press Up/Down key to set the values.

F factor: 000.000 T zero: +00.000 P zero: +01.000

Atmospheric P: 101.3 kPa

Read: Times: No.: Time:	Open 08 01 08:00	
Print: Times: No.: Time:	Open 08 01 10:00	

Page 34 of 61

3.7.20 Clock Setup

After setting timing meter reading, press ENTER key to enter clock setup menu. Press Right key to shift cursor, and then press Up/Down key to set the values.

Real-time Clock: Date: 2010-07-20 Time: 17:00:39

3.7.21 Communication

After setting clock, press ENTER key to enter communication menu. Press key to shift cursor, and then press Up/Down key to select options or set the values.

Com type:	RS485
Device ID:	0001
Baud rate:	9600

Communication type				
1. RS485 3. Ethernet				
2. RS232	4. None			

The range of device ID: 01-254. Baud rate: Optional 600, 1200, 2400, 4800 and 9600. For communication, it needs to order corresponding interface, please state when ordering.

3.7.22 Current Output

After setting communication, press ENTER key to enter current output menu. Press Right key to shift cursor on 4-20mA, and then press Up key to select different current output types.

Current output: Options: 01/04	Current output type	Current output:	1. Flow rate
	1. 4-20mA	Options: 02/04	2. Temperature
Output type: 4-20mA	2. 0-10mA	Output variable:	3. Gauge pressure (MPa)
+2011/1	3. 0-20mA		4. DP (differential pressure, kPa)
Current output: Current output:		Note: When shifting the cursor	5. Density (Kg/m3)
Options: 03/04	Options: 04/04	on the +/- symbol, press Up key to switch positive and	6. Thermal enthalpy (KJ/kg)
+000000.00	+0000100.00	negative value.	7. Power (MJ/h)

4. None interface, pleas

After selecting output type, press Left key to shift cursor on Output type, press Up key to change output type to output variable. Press Right key to shift cursor on variable option, and then press Up key to select different output variables.

After selecting output variable, press Left key to shift cursor on Output variable, press Up key to change output variable to Lower scale. Press Right key to shift cursor on lower scale value, and then press Up/Down key to change the value.

After setting lower scale, press Left key to shift cursor on Lower scale, press Up key to change lower scale to upper scale. Press Right key to shift cursor on upper scale value, and then press Up/Down key to change the value.

3.7.23 Pulse Output

After setting current output, press ENTER key to enter pulse output menu. Press Right key to shift cursor on Mode option, and then press Up key to select Scale freq or Equivalent (Scaled freq.: Pulse frequency for flow rate; Equivalent: equivalent pulse for totalizer). For equivalent pulse, the equivalent coefficient can be selected 0.001, 0.01, 0.1, 10, 100 or 1000.

Pulse output:	Pulse output:
Mode: Equivalent	Mode: Scaled freq
Equivalent coe.:	Freq: 0000-5000Hz
0.001	F.S: 0000010.000

3.7.24 Alarm 1

After setting pulse output, press ENTER key to enter alarm 1 menu. Press Right key to shift cursor on alarm variables value, and then press Up key to select different alarm types.

After setting alarm variable type, press Left key to shift cursor on Alarm variable, press Up key to change Alarm variable to Alarm value, press Right key to shift cursor on value, and then press Up/Down key to change the value.

After setting alarm value, press Left key to shift cursor on Alarm value, press Up key to change Alarm value to Alarm hysteresis, press Right key to shift cursor on value, and then press Up/Down key to change the value.

Alarm 1 variable type					
1. None 4. Temperature upper scale					
2. Flow rate upper scale	5. Temperature lower scale				

Page 35 of 61

[]			3. Flow rate lower scale	6. Pressure upper scale
Alarm 1:	Alarm 1:	Alarm 1:	7. Pressure lower scale	
Alarm variable:	Alarm value:	Alarm hysteresis:		
Flow upper scale	+0000000.000	0000.00		

3.7.25 Alarm 2

After setting alarm 1, press ENTER key to enter alarm 2 menu. Press Right key to shift cursor on alarm variable value, and then press Up key to select different alarm types.

After setting alarm variable type, press Left key to shift cursor on Alarm variable, press Up key to change Alarm variable to Alarm value, press Right key to shift cursor on value, and then press Up/Down key to change the value.

After setting alarm value, press Left key to shift cursor on Alarm value, press Up key to change Alarm value to Alarm hysteresis, press Right key to shift cursor on value, and then press Up/Down key to change the value.

		Alarm 2: Options: 3/3 Alarm hysteresis: 0000.00	Alarm 2 type		
Alarm 3: Options: 1/3	Alarm 2: Options: 2/3		1. None	4. Temperature upper scale	
Alarm variable:	Alarm value:		2. Flow rate upper scale	5. Temperature lower scale	
Flow upper limit	+0000000.000		3. Flow rate lower scale	6. Pressure upper scale	
			7. Pressure lower scale		

3.8 Total Reset

In main menu, press Up or Down key to select Total Reset submenu, and then press ENTER key to enter.

Main Menu

Password

- 4. Calibrate
- 5. Setup
- 6. Total Reset

password is 000000, customers can modify the password according to 3.10 Password.

The Reset submenu also has password protection. The default

After input correct password, press ENTER key, it will be shown as below.

Total Reset: 1. Total flow 2. Total heat

2. Iotal neat

3. Power DN/Illegal

Total flow 00000012.4458 Total heat 00000041.45788 Power down: 0005 Illegal action: 0001

Press Right key to shift cursor on Total flow and then press ENTER key to enter. In Total flow reset menu, press Right key to shift cursor, and then press Up/Down key to change the value. After setting, press ENTER key to return Total Reset submenu.

Press Right key to shift cursor on Total heat and then press ENTER key to enter. In Total heat reset menu, press Right key to shift cursor, and then press Up/Down key to change the value. After setting, press ENTER key to return Total Reset menu.

Press Right key to shift cursor on Power DN/Illegal, and then press ENTER key to enter. In Power DN/Illegal menu, press Right key to shift cursor, and press Up/Down key to change the times values of power down and illegal action.

3.9 Save

This submenu is used to download operating data from instrument. If customers need this function, please order USB interface.

3.10 Password

In main menu, press Up or Down key to select Password submenu, and then press ENTER key to enter.

Main Menu	Password change:	Setup:
6. Total Reset	1. Setup	Old: XXXXXX
7. Save	2. Calibrate	New: 000001
8. Password	3. Total reset	Successful !

Press Right key to shift cursor on Setup, press ENTER key to enter setup password menu, input old and new passwords, and then press ENTER key, it will display "Successful !".

The setup method of calibrate and total reset password is the same as that of setup password.

3.11 Display

In main menu, press Up or Down key to select Display submenu, and then press ENTER key to enter.

Press Right key to select display mode, and press ENTER key to enter. Press Right key to shift cursor on display options, and press Down key to switch the options displaying or not ($\sqrt{}$ means options displaying, else no displaying). After setting, press ENTER key to return display submenu.

Main Menu	1. Display mode	Mode: 5s loop	Mode: 5s loop	Mode: 5s loop
7. Save	2. Display unit	1. Flow √	4. Temp. graph √	5. Pres. graph √
8. Password		2. Heat √	5. Pres. graph √	6. Power down √
9. Display option		3. Flow graph $$	6. Power down √	7. self-test $$

Press Right key to select display unit, and press ENTER key to enter.

Display unit:	Display Unit
Flow: Kg/h	Flow: Nm3/h, Nl/h, Nl/m, t/h, kg/h, m3/h, l/h and l/m
Pressure: MPa Temp.: °C	Pressure: MPa and KPa
	Temperature: °C and °F

Part 4 Wirings

4.1 Wiring Terminals

Terminals Definition

No.	Definition	No.	Definition	No.	Definition	No.	Definition
1	Flow current input	8	Pressure current input	15	Temp. current input	22	Current output +
2	Blank	9	Blank	16	Blank	23	Current output -
3	RS-485 (A)	10	24V (+) output	17	Battery +	24	Pulse output +
4	RS-485 (B)	11	Public GND	18	Battery -	25	Pulse output -
5	Pt100, A	12	12V (+) Output	19	GND	26	Alarm 1 normally-closed contact
6	Pt100, B	13	Flow pulse input	20	220V N	27	Alarm 1 normally-open contact
7	Pt100, B	14	Public GND	21	220V L	28	Alarm 1 common contact

4.2 Wiring Diagrams

Output Wiring

Toggle switch: Output board is shown as below.

Receiving

Wiring of flow (Pulse), Temperature (Pt100), pressure transmitter and power supply

Wiring of two-wire flow transmitter or differential pressure

transmitter

Page 40 of 61

Appendix 1 Application Examples

A.1 Example 1

DN50 Vortex flow sensor, measure vapor; average flow coefficient is 9.4132/l; temperature and pressure compensation; temperature sensor Pt100; pressure transmitter 0-1,6MPa; 4-20mA output; No alarm; low frequency cut-off is 60Hz; temperature range +150 \sim 200°C (If temperature is out if the range, use 180°C setting temperature); pressure range 0.7 \sim 1.0MPa (If pressure is out if the range, use 0.8MPa setting pressure).

Parameters Setup

A.2 Example 2

DN100 vortex flow transmitter, measure compressed air in standard condition; output 4-20mA; flow range is 0-2000m3/h; temperature and pressure compensation; average working temperature: +20°C; the average working pressure: +0.3MPa; Low

flow cut-off 50m3/h; damping time 5s.

Parameters Setup

A.3 Example 3

Annubar flow meter, Rosemount 3095 transmitter and Pt100; measure vapor; output 4-20mA for vapor mass; range 0-10t. Flow totalizer configuring with Pt100 temperature sensor and 0-1.6MPa pressure transmitter; display temperature, pressure, flow rate, power, flow totalizer and energy of vapor; temperature range +130 \sim 200 $^{\circ}$ C; common temperature: +180 $^{\circ}$ C; pressure range 0.6 \sim 1.0MPa; common pressure: +0.8MPa.

Parameters Setup

Meter: Mass Flow	Meter: Mass Flow	Iass Flow 02/04Meter: Mass Flow Options: 03/04 Flow F.S.: 00010.000 m3/hMeter: Mass Flow Options: 04/04 Cut-off current: 4.000mA		Medium:
Options: 01/04	Options: 02/04			Vapor (Auto)
Signal type:	Flow F.S. unit:			Option:
4-20mA	t/h			Pres. priority
T Sensor: Pt100 Const.: +180.00	P Sensor: 4-20mA G Const.: +00.800 L scale: +00.000 H scale: +01.600	T lower: +130.0 T upper: +200.0 P lower: -00.60 P upper: +01.00		Mode: 5s loop 5. Pres. graph 6. Power down 7. self-test √

A.4 Example 4

V-cone flowmeter, measure vapor mass; Rosemount 3051 differential pressure transmitter, Pt100 and pressure transmitter; differential pressure transmitter range 0 ~ +300Pa; output 4-20mA No $\sqrt{}$; flow range 20t/h; design density 3.3342kg/m3; pressure transmitter range 0 ~ 1.6MPa; temperature range +170~+260°C; common temperature: +200°C; pressure range 0.6~1.0MPa; common pressure: +0.7MPa; low current cut-off 4.005mA.

Parameters Setup

A.5 Example 5

Magnetic flowmeter, measure liquid; output 4-20mA; range 0-60m3/h.

Parameters Setup

Meter: Veloc./PD	Dc./PD Meter: Veloc./PD 02/04 Options: 03/04 nit: m3/h	Meter: Veloc./PD	Medium:
Options: 01/04		Options: 04/04	Liquid (Volume)
Signal type:		Cut-off current:	Density (20°C):
4-20mA		4.000mA	1000.0000kg/m3

A.6 Example 6

Ultrasonic flowmeter, measure liquid; output 4-20mA; range 0-300m3/h.

Parameters Setup

Meter: Veloc./PD	Meter: Veloc./PD	Meter: Veloc./PD	Meter: Veloc./PD	Medium:
Options: 01/04	Options: 02/04	Options: 03/04	Options: 04/04	Liquid (Volume)
Signal type:	Flow F.S. unit:	Flow F.S.:	Cut-off current:	Density (20°C):
4-20mA	m3/h	00300.000 m3/h	4.000mA	1000.0000kg/m3

A.7 Example 7

Orifice plate flowmeter, measure vapor; Rosemount 3051 differential pressure transmitter, Pt100 and pressure transmitter; flow range 0-20t; design density 5.17kg/m3; output of differential pressure transmitter is 4-20mA No $\sqrt{}$; pressure transmitter range 0 ~ 1.6MPa; temperature range +130~+200°C; common temperature: +180°C; pressure range 0.6~1.0MPa; common pressure: +0.8MPa.

Parameters Setup

Meter: DP Scale Options: 01/08 Signal type: 4.20mA No. 7	Meter: DP Scale Options: 02/08 Scaled flow unit:	Meter: DP Scale Options: 03/08 Scaled range: 0000020 000t/b	Meter: DP Scale Options: 04/08 Design density: 0005 1700kg/m3	Meter: DP Scale Options: 08/08 Cut-off current:	Medium: Vapor (Auto) Option: Pres. priority
4-2011A NO V		0000020.0000/11	0005.1700kg/m3	4.000MA	Pres. phonty

The setup of temperature and pressure refers to example 3.

A.8 Example 8

V-Cone flowmeter, measure natural gas in standard condition; Rosemount 3051 differential pressure transmitter, Pt100 and pressure transmitter, differential pressure transmitter range 0 ~ +300Pa, output 4-20mA No $\sqrt{}$; pressure transmitter range 0 ~ 1.6MPa; temperature range -40~+60°C; common temperature: +25°C; pressure range 0.4~0.8MPa; common pressure: +0.5MPa; local atmospheric pressure 98.4KPa; low current cut-off 4.005mA.

Parameters Setup

Meter: V-Cone DP	Meter: V-cone DP	Meter: V-Cone DP	Meter: V-Cone DP	Meter:V-Cone DP
Options: 01/09	Options: 06/09	Options: 07/09	Options: 08/09	Options: 09/09
Signal type:	DP unit:	DP low scale:	DP high scale:	Cut-off current:
4-20mA No √	Pa	+000.000Pa	+300.000Pa	4.005mA
Medium: Gas (Std. volume) Std. density: 0000.6660kg/m3	Atmospheric P: 98.4 kPa	V-cone calculation sh Cone diameter d 275. coefficient c 0.85. The setup of temperat	eet provides: Pipe inside 13mm; Expansibility factor ture and pressure refers to	diameter D 400mm, ε 0.9982; Discharge example 3.

A.9 Example 9

DN50 Vortex flow sensor, measure hot-water; flow coefficient is 9.2187/l; damping time 5s; low flow cut-off 2t; temperature range $+50 \sim +90$ °C.

Parameters Setup

Page 45 of 61

The setup of temperature refers to example 3.

A.10 Example 10

Elbow flowmeter, measure vapor (mass); Rosemount 3051 differential pressure transmitter, Pt100 and pressure transmitter, differential pressure transmitter range 0 ~ +300Pa, output 4-20mA No $\sqrt{}$; pressure transmitter range 0 ~ 4.0MPa; expansibility factor 0.9876; flow coefficient 1.299; temperature range +300~+350°C; common temperature: +325°C; pressure range 1.4~ 1.8MPa; common pressure: +1.6MPa; low current cut-off 4.005mA.

Parameters Setup

The setup of temperature refers to example 3.

Appendix 2 Modbus-RTU Communication Protocol

B.1 Communication Instruction

Interface: RS485; Baud rate: Optional 1200, 2400, 4800 or 9600; Start bit: 1, Data bit: 8, Stop bit: 1, Parity bit: none.

B.2 Command Format

Sending Command from PC (Express in Hex)

Meter	Function	High byte of start	Low byte of start	High byte of	Low byte of	CPC high byte	CBC low byte
Address	code	register	register	register length	register length	CRC nigh byte	CRC low byte

Answer Command from Instrument (Express in Hex)

Address Function code Return Byte number Ret	data from register CRC high byte	CRC high byte
--	----------------------------------	---------------

Notes: 1. When debugging, it can use the universal CRC "AA AA".

- 2. Register length should be less than 32 (20 in Hex).
- 3. When the baud rate is low, and the register length is long, the waiting time of PC should be extended.

B.3 Register Map

Register Address	Parameters	Register Address	Parameters
0x0000	Flow rate	0x0010	In enero
0x0001	Flow fate	0x0011	III spare
0x0002	Frequency (Hz)	0x0012	In spare

0x0003		0x0013		
0x0004	Differential pressure (KDa)	0x0014	Flow totolizor (t)	
0x0005	Dillerential pressure (KPa)	0x0015		
0x0006		0x0016		
0x0007	Pressure (MPa)	0x0017	Energy (GJ)	
0x0008	Temperature (°C)	0x0018	Potton (voltage (V)	
0x0009	Temperature (C)	0x0019	Ballery vollage (v)	
0x000A	Donoity (kg/m2)	0x001A	External newer voltage (V)	
0x000B	Density (kg/m3)	0x001B	External power voltage (V)	
0x000C	Dower (M1/b)	0x001C	Times of neuror down (Two bytes in Hey)	
0x000D	Power (MJ/II)	0x001D	Times of power down (Two bytes in Hex)	
0x000E	Status and 1 and 2	0x001E	In spare	
0x000F		0x001F	Times of illegal operation (Two bytes in Hex)	

	Status Code 1		Status Code 2
Bits	Description	Bits	Description
15	In spare	15	In spare
14	In spare	14	In spare
13	LCD status, 0: ok, 1: Fault	13	In spare
12	Clock status, 0: ok, 1: Fault	12	In spare
11	AD convertor status, 0: ok, 1: Fault	11	In spare
10	Memory status, 0: ok, 1: Fault	10	In spare
9	Battery status, 0: ok, 1: Low voltage	9	In spare
8	Parameter status, 0: ok, 1: Overflow	8	Power supply, 0: External power, 1: Battery
7	In spare	7	Frequency/current cut-off, 0: cut-off, 1: no cut-off
6	In spare	6	In spare

5	In spare	5	In spare
4	In spare	4	In spare
3	In spare	3	In spare
2	Stream status, 0: superheated vapor, 1: saturated vapor	2	In spare
1	Temperature compensation range, 0: ok, 1: Overflow	1	In spare
0	Pressure compensation range, 0: ok, 1: Overflow	0	In spare

B.4 Examples

Sending command: 01 03 00 00 00 18 45 C0	Answer: 01 03 30 0D 44 41 04 00 00 42 92 0B FF 46 B3 00 00 00 00 00 00 00 00 00	48 00 00 00 00 CC 26 3F 4C 00 01 43 34 B9 68 40 0 00 00 00 03 90 946 45 48 F4 46 18 78 38		
01: Instrument address	01: Instrument address 03: function code			
00 00: Start register address	0D 44 41 04: Flow rate, 8.2532	0 00 42 48: Frequency, 50Hz		
00 18: Register length	00 00 00 00: Differential pressure, 0KPa			
45 C0: CRC check	CC 26 3F 4C: Pressure, 0.8000MPa			
	00 01 43 34: Temperature, 180.0000℃			
	B9 68 40 92: Density, 4.5851kg/m3			
	0B FF 46 B3: Power, 22917.9980MJ/h			
	00 00 00: self-test/Alarm 1, 2, 3, 4			
	00 00 00 00: In spare 00 00 00 00: In spare			
	39 09 46 45: Flow totalizer, 12622.1533t	39 09 46 45: Flow totalizer, 12622.1533t		
	48 F4 46 18: Energy, 9745.9453GJ	78 38: CRC check		

Appendix 3 Modscan32 Software

C.1 Parameter Setup

- Display Option: Floating Pt
- Modbus function code: 03 HOLD REGISTER
- Device Id: Slave Device Address
- Address: Point address within the device
- Length: Number of points to scan/display
- Connection: Select serial port
- Baud rate: Communication baud rate
- Word bit: 8 bit
- Parity: None
- Stop bit: 1

onnection 1	Details					
Connect Using:						
ļ						
	Phone N Servic	e Port: 4001				
Configuration		- Hardware Flow Control				
Baud Rate:	9600	Lodbus Protocol Sele	ections 🛛 🕅			
Word Length:	8					
Parity:	NONE	STANDARD	DANIEL/ENRON/OMNI			
Stop Bits:	1	C ASCIL 💿 RTU	C ASCII C RTU			
		Slave Response Ti	meout 00 (msecs)			
	F		(110000)			
	L	Delay Between Pol	ls			
		50	l0 (msecs)			
		(To be used in cases single-point write funct	nd 15 and 16 for single-point writes. where the slave does not support the tions 05 and 06.)			
			Cancel			

C.2 Display Screen

== ModScan32 - [ModSca1]								
Addres: Length:	s: 0001 Device Id: 1 MODBUS Point Type 24 03: HOLDING REGISTER •	Number of Polls: 183 Valid Slave Responses: 183 Reset Ctrs						
40001: 40002: 40003: 40004: 40005: 40006:	8.2532 50.0000 0.0000							
40008: 40009: 40010: 40011: 40012: 40013: 40014:	180.0000 4.5851 22917.9980	Display floating point type (03 function code)						
40015: 40016: 40017: 40018: 40019: 40020:	0.0000 0.0000 0.0000							
40021: 40022: 40023: 40024:	9745.9453							

==ModScan32 - [ModSca1]								
🔁 Elle Connection Setup View Window Help								
Address: 0001 Device Id: 1 MODBUS Point Type	Number of Polls: 124 Valid Slave Responses: 124							
Length: 24 03: HOLDING REGISTER	Reset Ctrs							
L								
40001: <1048H> 40002: <4104H>								
40003: <0000H> 40004: <4248H>								
40005: <0000H> 40006: <0000H>	Display integer type (03 function code)							
40007: <d126h> 40008: <3F4CH></d126h>								
40009: <0001H> 40010: <4334H>								
40011: <bcc2h> 40012: <4092H></bcc2h>								
40013: <1016H> 40014: <46B3H>								
40015: <0000H>								
40017: <0000H>								
40018: <0000H> 40019: <0000H>								
40020: <0000H> 40021: <3813H>								
40022: <4645H>								
40024: <4618H>								

Note:

In MODBUS communication, the data is expressed in Hex, and the floating point data adopts IEEE754 standard.

The data format is shown as below.

- One bit: symbol bit
- Eight bits: exponent bits
- Twenty-three bits: mantissa bits

The symbol bit is the highest bit, and the mantissa bits are the lowest bits.

It can be described as follow according to bytes:

Address	+0	+1	+2	+3
Content	SEEE EEEE	EMMM MMMM	MMMM MMMM	MMMM MMMM

Among above table:

S is symbol bit, 1 indicates negative, and 0 indicates positive.

E is exponent bit (Between two bytes), and has a shift with 127.

M is mantissa bit, the high bit of mantissa is still "1".

Appendix 4 Computational Formula

D.1 Velocity/Volume

1. Mass flow expression

Applicable Medium Type

- 1. Vapor Automatic Compensation
- 2. Saturated vapor temperature compensation
- 3. Saturated vapor pressure compensation
- 4. Superheated vapor pressure and temperature compensation
- 5. Gas (Mass) 6. Liquid (Mass)
- 7. Constant Density

1.1 Signal type: pulse (Volume)

 $Q_{\rm m} = 3.6 * \rho * F/K$

 Q_m : Flow rate, t/h; ρ : Medium density, kg/m3; F: Output frequency of flow sensor, Hz; K: Flow coefficient, 1/I.

1.2 Signal type: 4-20mA (Volume)

$$Q_{m} = \rho * \frac{I-4}{16} * FS$$

 Q_m : Flow rate, t/h; ρ : Medium density, kg/m3; I: Output current of flow transmitter, mA; FS: Flow transmitter range, m3/h.

1.3 Signal type: 0-10mA (Volume)

$$Q_{m} = \rho * \frac{I}{10} * FS$$

 Q_m : Flow rate, t/h; ρ : Medium density, kg/m3; I: Output current of flow transmitter, mA; FS: Flow transmitter range, m3/h.

2. Volume flow in working condition expression

Applicable Medium Type: Liquid volume

2.1 Signal type: pulse (Volume) $\label{eq:Qv} \begin{array}{l} Q_v = 3.6 \mbox{ * } F/K \\ \ensuremath{\mathsf{Q}_v} : \mbox{ Flow rate, m3/h; F: Output frequency of flow sensor,} \\ \mbox{Hz; K: Flow coefficient, 1/l.} \end{array}$

2.2 Signal type: 4-20mA (Volume)

$$Q_v = \frac{I-4}{16} * FS$$

 Q_v : Flow rate, m3/h; F: Output current of flow sensor, Hz; FS: Flow transmitter range, m3/h.

2.3 Signal type: 0-10mA (Volume) $Q_v = \frac{I}{10} * FS$

Q_v: Flow rate, m3/h; F: Output current of flow sensor, Hz; FS: Flow transmitter range, m3/h.

3. Volume flow in standard condition expression

Applicable Medium Type: Gas volume (Std. condition)

3.1 Signal type: pulse (Volume) $Q_v = 3.6*F/K*\frac{(P+101.325)*(273.15+T_0)}{101.325*(273.15+T)}$

Q_v: Flow rate, Nm3/h; F: Output frequency of flow sensor, Hz; K: Flow coefficient, 1/I; P: Medium gauge pressure, MPa; T: Medium temperature, °C; T0: Temperature in std. condition, °C.

3.2 Signal type: 4-20mA (Volume)

$$Q_{v} = \frac{I-4}{16} * FS * \frac{(P+101.325) * (273.15 + T_{0})}{101.325 * (273.15 + T)}$$

Q_v: Flow rate. Nm3/h: I: Output current of flow transmitter. mA: FS: Flow transmitter range, m3/h.

3.3 Signal type: 0-10mA (Volume)

$$Q_{v} = \frac{I}{10} * FS * \frac{(P+101.325) * (273.15 + T_{0})}{101.325 * (273.15 + T)}$$
O : Flow rate, Nm2/h; I: Output current of flow transm

Q_v: Flow rate, Nm3/h; I: Output current of flow transmitter, mA: FS: Flow transmitter range, m3/h.

D.2 Mass Flow

1. Mass flow expression

Applicable Medium Type

- 1. Vapor Automatic Compensation
- 2. Saturated vapor temperature compensation
- 3. Saturated vapor pressure compensation

4. Superheated vapor pressure and temperature compensation 5. Gas (Mass) 6. Liquid (Mass)

1.1 Signal type: pulse (Mass) $\label{eq:Qm} \begin{array}{l} Q_m = 3.6 * F/K \\ Q_m : \mbox{Flow rate, t/h; F: Output frequency of flow sensor, Hz;} \\ \mbox{K: Flow coefficient, 1/kg.} \end{array}$

1.2 Signal type: 4-20mA (Mass) $Q_{\rm m} = \frac{I-4}{16} * FS$

 $Q_m\!\!:$ Flow rate, t/h; l: Output current of flow transmitter, mA; FS: Flow transmitter range, t/h.

1.3 Signal type: 0-10mA (Mass)

$$Q_{m} = \frac{I}{10} * FS$$

Q_m: Flow rate, t/h; I: Output current of flow transmitter, mA; FS: Flow transmitter range, t/h.

2. Volume flow in working condition expression

Applicable Medium Type:

- 1. Gas (Std. condition volume); 2. Liquid (Volume)
- 2.1 Signal type: pulse (Mass)
- $Q_v = 3.6 * F/K/\rho$

 $Q_{\nu}\!\!:$ Flow rate, m3/h; $\rho\!\!:$ Medium density, kg/m3; F: Output frequency of flow sensor, Hz; K: Flow coefficient, 1/kg.

2.2 Signal type: 4-20mA (Mass)

$$Q_v = \frac{I-4}{16} * FS/\rho$$

 Q_v : Flow rate, m3/h; ρ : Medium density, kg/m3; I: Output current of flow transmitter, mA; FS: Flow transmitter range, t/h.

2.3 Signal type: 0-10mA (Mass)

$$Q_v = \frac{I}{10} * FS/\rho$$

 Q_v : Flow rate, m3/h; ρ : Medium density, kg/m3; I: Output current of flow transmitter, mA; FS: Flow transmitter range, t/h.

D.3 DP Flow

1. Mass flow expression

Applicable Medium Type

- 1. Vapor Automatic Compensation
- 2. Saturated vapor temperature compensation
- 3. Saturated vapor pressure compensation
- 4. Superheated vapor pressure and temperature compensation 5. Gas (Mass) 6. Liquid (Mass)

1.1 Signal type: 4-20mA No $\sqrt{}$ $Q_m = Q_s * \sqrt{\frac{\rho_w}{\rho_d}} * \sqrt{\frac{I-4}{16}}$ 1.2 Signal type: 0-10mA No $\sqrt{}$ $Q_m = Q_s * \sqrt{\frac{\rho_w}{\rho_d}} * \sqrt{\frac{I}{10}}$ 1.3 Signal type: 4-20mA $\sqrt{}$ $Q_m = Q_s * \sqrt{\frac{\rho_w}{\rho_d}} * \frac{I-4}{16}$ 1.4 Signal type: 0-10mA $\sqrt{}$ $Q_m = Q_s * \sqrt{\frac{\rho_w}{\rho_d}} * \frac{I}{10}$ Q_m: Flow rate, t/h; Qs: Flow transmitter range, t/h;.pd:

 Q_m : Flow rate, t/h; Q_s : Flow transmitter range, t/h; ρ_d : Medium design density, kg/m3; ρ_w : Medium density in working condition, kg/m3;

2. Volume flow expression

Applicable Medium Type 1. Gas (Std. condition volume); 2. Liquid (Volume)

2.1 Gas (Std. volume): $Q_V = Q_m / \rho_s$ Q_v: Flow rate, Nm3/h; Q_m: Flow rate, t/h; ρ_s : Medium density in std. condition, kg/m3;

2.2 Liquid (Volume): $Q_V = Q_m \ / \ \rho$ Q_v: Flow rate, m3/h; Q_m: Flow rate, t/h; p: Medium density, kg/m3;

D.4 Orifice DP

1. Mass flow expression

Applicable Medium Type

- 1. Vapor Automatic Compensation
- 2. Saturated vapor temperature compensation
- 3. Saturated vapor pressure compensation
- 4. Superheatedvaporpressureandtemperaturecompensation5. Gas (Mass)6. Liquid (Mass)

$$Q_{m} = 3.6* \frac{C}{\sqrt{1 \cdot (\frac{d}{D})^{4}}} * \varepsilon * \frac{\pi}{4} d^{2} * \sqrt{2* \Delta P^{*} \rho}$$

1.1 Flow rate:

 Q_m : Flow rate, t/h; c: Discharge coefficient; d: Hole diameter, m; D: Pipe inside diameter, m; ϵ : Expansibility factor; $\triangle P$: DP value, Pa; ρ : Medium density, kg/m3;

1.2 DP value: 4-20mA No $\sqrt{:}$ $\Delta P = \frac{I-4}{16} * (DP_{max} - DP_{min}) + DP_{min}$ 0-10mA No $\sqrt{:}$ $\Delta P = \frac{I}{10} * (DP_{max} - DP_{min}) + DP_{min}$ 4-20mA $\sqrt{:}$ $\Delta P = (\frac{I-4}{16})^2 * (DP_{max} - DP_{min}) + DP_{min}$ 0-10mA $\sqrt{:}$ $\Delta P = (\frac{I}{10})^2 * (DP_{max} - DP_{min}) + DP_{min}$ $\Delta P: DP$ value, Pa; DP_max: Upper limit of pressure transmitter, Pa; DP_min: Lower limit of pressure transmitter, Pa;

2. Volume flow expression

Applicable Medium Type

1. Gas (Std. condition volume); 2. Liquid (Volume)

2.1 Gas (Std. volume): $Q_V = Q_m / \rho_s$ Q_v: Flow rate, Nm3/h; Q_m: Flow rate, t/h; ρ_s : Medium density in std. condition, kg/m3;

2.2 Liquid (Volume): $Q_v = Q_m \ / \ \rho$ Q_v : Flow rate, m3/h; Q_m : Flow rate, t/h; ρ : Medium density, kg/m3;

D.5 V-Cone DP

1. Mass flow expression

Applicable Medium Type

- 1. Vapor Automatic Compensation
- 2. Saturated vapor temperature compensation
- 3. Saturated vapor pressure compensation
- 4. Superheatedvaporpressureandtemperaturecompensation5. Gas (Mass)6. Liquid (Mass)

1.1 Flow rate:

$$\int^* \underbrace{C}_{\delta^*} \varepsilon^* \varepsilon^* \overline{\pi}^* (D^2 - d_v^2)^* \sqrt{2^* \Delta P^* \rho}$$

 $(^{2} - d_{v}^{2})$

D

 $Q_{\rm m} = 3.6 * \frac{C}{\sqrt{1 - B_{\rm v}^4}} * \varepsilon * \frac{\pi}{4} (D^2 - d_{\rm v}^2) * \sqrt{C^2 - C^2}$

 Q_m : Flow rate, t/h; c: Discharge coefficient; d_v: Max. cone cross-section diameter in working condition, m; D: Pipe inside diameter, m; ϵ : Expansibility factor; \triangle P: DP value, Pa; ρ : Medium density, kg/m3.

Bv: equivalent diameter ratio,
$$B_v = \frac{\sqrt{L}}{2}$$

The formula of DP value of mass flow refers to that of DP value of orifice DP.

The formula of gas and liquid of volume flow refers to that of gas and liquid of orifice DP.

D.6 Annubar

- 1. Mass flow expression
- Applicable Medium Type
 1. Vapor Automatic Compensation
 2. Saturated vapor temperature compensation
 3. Saturated vapor pressure compensation
 4. Superheated vapor pressure and temperature compensation
 5. Gas (Mass)
 6. Liquid (Mass)
 - 1.1 Flow rate: $Q_m = 3.4$

$$6*\alpha*\varepsilon*\frac{\pi}{4}*D^2*\sqrt{2*\Delta P*\rho}$$

 Q_m : Flow rate, t/h; α : Flow coefficient; D: Pipe inside diameter, m; ϵ : Expansibility factor; $\triangle P$: DP value, Pa; ρ : Medium density, kg/m3.

The formula of DP value of mass flow refers to that of DP value of orifice DP.

The formula of gas and liquid of volume flow refers to that of gas and liquid of orifice DP.

D.7 Elbow DP

1. Mass flow expression

Applicable Medium Type

1. Vapor Automatic Compensation

2. Saturated vapor temperature compensation

3. Saturated vapor pressure compensation

4. Superheated vapor pressure and temperature compensation 5. Gas (Mass) 6. Liquid (Mass)

1.1 Flow rate:

$$Q_{\rm m} = 3.6 * \alpha * \varepsilon * \sqrt{\frac{\rm R}{\rm D}} * \frac{\pi}{4} * {\rm D}^2 * \sqrt{2*\Delta P*\rho}$$

 Q_m : Flow rate, t/h; α : Flow coefficient; D: Pipe inside diameter, m; ϵ : Expansibility factor; R/D: Bend radius R; \triangle P: DP value, Pa; ρ : Medium density, kg/m3.

The formula of DP value of mass flow refers to that of DP value of orifice DP.

The formula of gas and liquid of volume flow refers to that of gas and liquid of orifice DP.

D.8 Formula of Liquid Density

$$\rho = \rho_{20} * \left[1 - \mu(t - 20) \right]$$

 ρ : Medium density, kg/m3; ρ_{20} : Medium density at 20 °C, kg/m3; u: Liquid coefficient of cubic expansion; t: Liquid temperature, °C.